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Offshore wind deployments depend 
on domestic manufacturing

• To meet 30 gigawatts 
(GW) by 2030 requires a 
scenario with no supply 
chain constraints

Plot from Shields (2023)
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Offshore wind deployments depend 
on domestic manufacturing

• To meet 30 gigawatts (GW) 
by 2030 requires a scenario 
with no supply chain 
constraints

• This requires five new 
blade manufacturing 
facilities to be developed, 
each producing 225 blades 
per year

• However, this considers 
only automation to have an 
impact in the long term.

Plot from Shields (2023)
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Current breakdown of SNL 100-03 
wind turbine blade manufacturing

• Premold steps are 
difficult to automate

• Automation has a lower 
material deposition rate

• Automated soft-fabric 
manipulation has a low 
technology readiness 
level.  

Table from Bortolotti (2019)
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Current breakdown of SNL 100-03 
wind turbine blade manufacturing

• Postmold operations 
have a much higher 
technology readiness 
level and thus make an 
impact in the short- and 
mid-term

• Automation can have a 
huge impact on 
eliminating supply chain 
constraints. Table from Bortolotti (2019)
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Current breakdown of SNL 100-03 
wind turbine blade manufacturing

• Trimming removes 
excess flashing material
– Uses a cutting tool to 

remove the bulk of 
material

– Grinds the remaining 
material to produce 
an aerodynamic shape

Table from Bortolotti (2019)
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Current breakdown of SNL 100-03 
wind turbine blade manufacturing

• Trimming removes excess 
flashing material 
– Uses a cutting tool to 

remove the bulk of 
material

– Grinds the remaining 
material to produce an 
aerodynamic shape

• Surface preparation is 
done before painting and 
adding protective coating.

Table from Bortolotti (2019)
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Due to high labor costs, automation can encourage 
manufacturers to locate in the United States

• Automated finishing can
– Increase quality
– Reduce cycle time 
– Increase throughput
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Due to high labor costs, automation can encourage 
manufacturers to locate in the United States

• Automated finishing can
– Increase quality
– Reduce cycle time 
– Increase throughput

• However, to make automated wind turbine blade finishing 
economically viable:
– Keep capital costs low 
– Be able to adapt to new blade designs
– Dramatically reduce cycle time.



NREL    |    12

Our techno-economic model shows that an ~62% 
reduction in finishing time is needed

• If capital costs are spread over 3 years, an ~60% reduction in 
finishing costs per blade is achieved
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Our techno-economic model shows that an ~62% 
reduction in finishing time is needed

• If capital costs are spread over 3 years, an ~60% reduction in 
finishing costs per blade is achieved

• Using the SNL 100-03 reference blade (Bortolotti 2019):
– 10 meters (m) per hour (hr) per worker for 6 workers = 1 m 

per minute (min)
• Automated trimming speed of 1.62 m/min

–  6 m2/worker/hr for 8 workers = .8 m2/min
• Automated sanding speed of 1.296 m2/min.



Tool Design for 
Automated Wind 
Turbine Blade Finishing

Phase 1
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Robots can use more 
aggressive tooling

• Robots can carry heavy payloads, 
produce high forces, and move quickly

• KUKA KR300 R2500 Ultra (2021), with 
a linear track, has the following 
features:
– 2.5-m reach, 300-kilogram (kg) 

payload, 6.6-m track
– Can reach up to 2.5 m per second 

(s).

Photo from KUKA KR300 R2500
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Trimming tool selection

• Band saw modified for cutting the 
bulk of flashing material from the 
wind turbine blade

Photo by Hunter Huth, NREL
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Trimming tool selection
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wind turbine blade

• Diamond band-saw blades provide 
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Trimming tool selection

• Band saw modified for cutting the 
bulk of flashing material from the 
wind turbine blade

• Diamond band-saw blades provide 
superior longevity

• Much faster trimming speeds 
compared to hand-held tools

• Equipped with rpm and motor load 
sensors to adjust speed based on 
resistance. Photo by Hunter Huth, NREL
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Grinding tool selection

• PushCorp (2020) AFD1240 active 
compliance device with STC1515 
spindle

Photo by Hunter Huth, NREL
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Grinding tool selection

• PushCorp (2020) AFD1240 active 
compliance device with STC1515 
spindle

• Custom dust collection shroud
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Grinding tool selection

• PushCorp (2020) AFD1240 active 
compliance device with STC1515 
spindle

• Custom dust collection shroud
• Flapped sanding wheels for more 

abrasive longevity

Photo by Hunter Huth, NREL
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Grinding tool selection

• PushCorp (2020) AFD1240 active 
compliance device with STC1515 
spindle

• Custom dust collection shroud
• Flapped sanding wheels for longevity
• Allows precise force control to 

consistently remove the desired 
amount of material.

Photo by Hunter Huth, NREL
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Sanding tool selection

• Tyrolit (2024) drum sander on the 
PushCorp active compliance device

Photo by Hunter Huth, NREL
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Sanding tool selection

• Tyrolit (2024) drum sander on the 
PushCorp active compliance device

• Allows application of consistent force 
with constantly changing orientation

Photo by Hunter Huth, NREL
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Sanding tool selection

• Tyrolit (2024) drum sander on the 
PushCorp active compliance device

• Allows application of consistent force 
with constantly changing orientation

• Drum sanders do not trap dust under 
the abrasive, resulting in more 
efficient use.

Photo by Hunter Huth, NREL



Toolpath Generation For Automated Finishing 
(2024)
Phase 2

Visualization in Rviz by Hunter Huth, NREL
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Capturing blade geometry is a two-
step process

• A global scan captures 3D 
point cloud data of the entire 
scene

• Blade position is determined 
by scene segmentation

• A local scan of the 
leading/trailing edge at the 
optimal distance for the Zivid 2 
camera (2023) is performed.

4× speed 

Screen record of Rviz by Hunter Huth, NREL
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First step is to identify important 
geometry on the wind turbine blade

• A moving least squares implemented 
through the point cloud library (Rusu, 
2011) is used to fit a smooth surface 
to the blade

Screen capture of Rviz by Hunter Huth, NREL



NREL    |    31

First step is to identify important 
geometry on the wind turbine blade

• A moving least squares implemented 
through the point cloud library (Rusu 
2011) is used to fit a smooth surface 
to the blade 

• The cloud is sliced in the spanwise 
direction

Screen capture of Rviz by Hunter Huth, NREL
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First step is to identify important 
geometry on the wind turbine blade

• A moving least squares implemented 
through the point cloud library (PCL 
2011) is used to fit a smooth surface 
to the blade

• The cloud is sliced in the spanwise 
direction

• Normal vectors in the chordwise 
direction are calculated and analyzed 
to find large changes in the normal at 
the leading edge/flashing boundary. Screen capture of Rviz by Hunter Huth, NREL
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Trimming toolpath generation

• Normal components in 
chordwise direction are 
calculated along the chord 
shown in the top plot

Plots by Hunter Huth
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Trimming toolpath generation

• Normal components in 
chordwise direction are 
calculated along the chord 
shown in the top plot

• Difference between adjacent 
normal vector magnitudes is 
calculated along the chord 
shown in the bottom plot
– Analogous to first derivative
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Trimming toolpath generation

• Normal components in chordwise 
direction are calculated along the 
chord shown in the top plot

• Difference between adjacent normal 
vector magnitudes is calculated 
along the chord shown in the 
bottom plot
– Analogous to first derivative 

• Flashing begins at the horizontal 
line, discovered by reducing high-
frequency noise and finding the 
absolute maximum.

Plots by Hunter Huth
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Trimming toolpath calculated from 
the leading/trailing edge

• An offset is added to prevent damage 
to the blade

Screen capture of Rviz by Hunter Huth, NREL
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Trimming toolpath calculated from 
the leading/trailing edge

• An offset is added to prevent damage 
to the blade

• Lead-ins and lead-outs are added 
every 2.5 meters to separate hanging 
flashings

Screen capture of Rviz by Hunter Huth, NREL
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Trimming toolpath calculated from 
the leading/trailing edge

• An offset is added to prevent damage 
to the blade

• Lead-ins and lead-outs are added 
every 2.5 meters to separate hanging 
flashings

• This toolpath is passed as a spline 
trajectory to the robot controller.

Screen capture of Rviz by Hunter Huth, NREL
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Trimming execution 

Leading Edge—4× speed Trailing Edge—4× speed

Videos by Hunter Huth, NREL
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Identifying leftover nose material 
after trimming from point cloud

• Slice leading-edge area into 2D cross 
sections
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Identifying leftover nose material 
after trimming from point cloud

• Slice leading-edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord
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Identifying leftover nose material 
after trimming from point cloud

• Slice leading-edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord

• Use parabola minimum as leading 
edge
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Identifying leftover nose material 
after trimming from point cloud

• Slice leading-edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord

• Use parabola minimum as leading 
edge

• Extract nose points below parabola 
minimum
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Point Cloud of Chord with 
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Raw point cloud data

Identified nose

Parabolic fit
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Identifying leftover nose material 
after trimming from point cloud

• Slice leading-edge area into 2D cross 
sections

• Fit a parabola along the leading-edge 
chord

• Use parabola minimum as leading edge
• Extract nose points below parabola 

minimum
• Nose thickness (Nt) is the average y-

distance to the leading edge
• Nose width (Nw) is the range of nose 

points in the x-direction.

-0.02 -0.01 0 0.01 0.02

Point Cloud of Chord with 
Nose

Nt

Nw
Raw point cloud data

Identified nose

Parabolic fit
Plots by Hunter Huth
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Grinding model for calculating travel velocity

• Model determines linear travel speed 
necessary to grind to a certain depth

• On first contact, pressure is high, so 
grinding depth increases

• Pressure decreases as grinder 
plunges into material until a steady-
state depth is reached. Gw = grinder width

F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

Image by Hunter Huth
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Grinding model for calculating travel velocity

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉
Time each slice is in 
contact with grinder

Gw = grinder width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

Image by Hunter Huth
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Grinding model for calculating travel velocity

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉

𝑉𝑉 =
𝑅𝑅

tan(θ) , 𝑅𝑅 =
𝐹𝐹
𝐴𝐴 ∗ μ, 𝐴𝐴 = Nw∗Nt∗sin(θ) 

Time each slice is in 
contact with grinder

Rate at which 
material is removed

Contact area of 
grinder and nose

Gw = grinder width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

Image by Hunter Huth



NREL    |    48

Grinding model for calculating travel velocity

𝐿𝐿 =
Nt

tan(θ)
, 𝑡𝑡 =

𝐿𝐿
𝑉𝑉

=
Nt

𝑅𝑅
=

Nt

tan θ ∗ 𝑉𝑉

𝑉𝑉 =
𝑅𝑅

tan(θ) , 𝑅𝑅 =
𝐹𝐹
𝐴𝐴 ∗ μ, 𝐴𝐴 = Nw∗Nt∗sin(θ) 

𝑉𝑉 =
𝐹𝐹 ∗ μ ∗ cos(θ)

Nw∗Nt

Time each slice is in 
contact with grinder

Rate at which 
material is removed

Contact area of 
grinder and nose

μ characterizes 
relationship 
between pressure 
and removal rate 

Linear velocity to 
remove nose given a 
grinding angle, force, 
nose size, and 
removal constant

Gw = grinder width
F = force
V = linear velocity
Θ = grinding angle
L = contact length

Nt = nose thickness
Nw = nose width
t = grind time
μ = removal 
constant

Image by Hunter Huth
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Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2 millimeters (mm)
• The pass length is optimized for longer passes to get a smooth 

finish.
Grinding Pass

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2

Pass 3
Small Nt has only 1 
mm removed 

End grinding pass because Nt  is 
smaller than previous max Nt



NREL    |    50

Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2 millimeters (mm)
• The pass length is optimized for longer passes to get a smooth 

finish.
Grinding Pass

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2 0 0 2 3 4 4 4 4 5 6 7
Pass 3

Small Nt has only 1 
mm removed 
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Grinding toolpath executed in 
multiple passes

• Maximum material removed per pass is 2 millimeters (mm)
• The pass length is optimized for longer passes to get a smooth 

finish.
Grinding Pass

Nt 2 4 6 7 8 7 5 5 7 8 9
Pass 1 0 2 4 5 6 6 5 5 7 8 9
Pass 2 0 0 2 3 4 4 4 4 5 6 7
Pass 3 0 0 0 1 2 2 2 2 3 4 5
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Leading- and trailing-edge detection 
for sanding toolpath

• Leading edge is detected through 
same algorithm as in the grinding 
process

0
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0.05
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-0.1 -0.05 0 0.05 0.1

Chord for Leading-Edge 
Detection

Plot by Hunter Huth
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Leading- and trailing-edge detection 
for sanding toolpath

• Leading edge is detected through 
same algorithm as in the grinding 
process

• Trailing edge for sanding is detected 
with the same algorithm as for 
trailing-edge trimming
– Needs scans above and below 

trailing edge
– Large change in normal at trailing 

edge.

Image by Hunter Huth
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Leading-edge sanding toolpath 
generation

• Separate leading-edge chords into 
sections that match width of sanding 
drum

Drawing created by Hunter Huth, NREL
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Leading-edge sanding toolpath 
generation

• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

Drawing created by Hunter Huth, NREL
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Leading-edge sanding toolpath 
generation

• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

• Toolpath orientation is the average 
orientation along the chords 

Drawing created by Hunter Huth, NREL



NREL    |    57

Leading-edge sanding toolpath 
generation

• Separate leading-edge chords into 
sections that match width of sanding 
drum

• Toolpath position follows the middle 
of the chord

• Toolpath orientation is the average 
orientation along the chords 

• Add lead-in/lead-outs for a soft touch 
with the sander Screen capture of Rviz by Hunter Huth, NREL
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Trailing-edge sanding toolpath 
generation

• Trailing-edge sanding toolpath follows 
the spanwise direction

• Sander angle relative to the trailing 
edge is calculated to sand to the 
desired chord depth and optimize 
abrasive usage

Photo by Hunter Huth, NREL
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Trailing-edge sanding toolpath 
generation

• Trailing-edge sanding toolpath follows 
the spanwise direction

• Sander angle relative to the trailing 
edge is calculated to sand to the 
desired chord depth and optimize 
abrasive usage

• Sander orientation is determined by 
the average normal orientation under 
the sanding drum. Screen capture of Rviz by Hunter Huth, NREL
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Sanding execution 

Leading Edge—4× speed Trailing Edge—4× speed

Videos by Hunter Huth, NREL
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Automated finishing results

• Trimming accuracy of -4.5/+0.7 mm 
and -3.1/+3.6 mm for leading and 
trailing edge, respectively

Operational Speed (m/min)

Leading Edge Trailing Edge

Trim 0.96 1.09

Grind 0.63 N/A
Sand 0.79 0.81
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Automated finishing results

• Trimming accuracy of -4.5/+0.7 mm 
and -3.1/+3.6 mm for leading and 
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•  Grinding could not consistently 
remove the correct amount of 
material
– Real-time feedback required to 

update the grinding model
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Automated finishing results

• Trimming accuracy of -4.5/+0.7 mm 
and -3.1/+3.6 mm for leading and 
trailing edge, respectively

•  Grinding could not consistently 
remove the correct amount of 
material
– Real-time feedback required to 

update the grinding model
• Sanding offered full and even 

coverage of the surface.

Operational Speed (m/min)

Leading Edge Trailing Edge

Trim 0.96 1.09

Grind 0.63 N/A
Sand 0.79 0.81



Real-Time Control
Phase 3

Image By Hunter Huth, NREL
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Real-time control to optimize for 
speed and accuracy 

• Previous phase focused on how to use 
captured blade geometry to plan 
toolpaths

Collect 3D data of 
blade geometry

Process data to 
plan a toolpath 

Execute toolpath
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Real-time control to optimize for 
speed and accuracy 

• Previous phase focused on how to use 
captured blade geometry to plan 
toolpaths

• Sequentially captured data, planned a 
toolpath, and executed the toolpath
– Inefficient in terms of cycle time

Collect 3D data of 
blade geometry

Process data to 
plan a toolpath 

Execute toolpath
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Real-time control to optimize for 
speed and accuracy 

• Previous phase focused on how to use 
captured blade geometry to plan toolpaths

• Sequentially captured data, planned a 
toolpath, and executed the toolpath
– Inefficient in terms of cycle time

• Next phase will scan, plan, and execute in 
parallel
– Substantial reduction in cycle time
– Limited by tool operation speed
– Real-time feedback to improve finish 

quality.

Collect 3D data of 
blade geometry

Process data to 
plan a toolpath Execute toolpath
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Real-time control of an industrial 
robot

• Kuka has a real-time interface that 
allows streaming of joint commands 
every 4 milliseconds (ms)
– Allows finite control of joints to 

improve accuracy

Image by Hunter Huth, NREL
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Real-time control of an industrial 
robot

• Kuka has a real-time interface that 
allows streaming of joint commands 
every 4 milliseconds (ms)
– Allows finite control of joints to 

improve accuracy
• Trajectory will be planned from Robot 

Operating System (ROS) 2 (Macenski, 
2022)
– Real-time improvements from ROS 

that leverage a real-time kernel. Image by Hunter Huth, NREL
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Capture data with a 3D laser line 
profiler

• Capture real-time scans in the 
chordwise direction
– Faster processing of chords
– Capture and process data while 

performing the operation
• Real-time quality feedback to ensure 

the correct aerodynamic shape is 
being produced.

Photo by Casey Nichols, NREL



NREL    |    71

How does this robot reach the entire surface?

Full-Length Track With 
Stationary Blade

+Requires less factory 
space
+Simple concept
−High track cost
−Less flexibility
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How does this robot reach the entire surface?

Full-Length Track With 
Stationary Blade

+Requires less factory 
space
+Simple concept
−High track cost
−Less flexibility

Mobile Blade With 
Stationary Robot

+Low cost
+Efficient moving-line 
layout
+High flexibility
−Complex control 
−Requires 2× blade 
length for finishing bay

Robot on Mobile 
Platform 

+Requires less factory 
space
+Highly flexible
−Expensive automated 
guided vehicle (AGV)
−Complex cable 
management
−Complex control

Partial-Length Track 
With Mobile Blade

+Lowest risk due to 
simplicity
+Low cost
+High flexibility
−Requires 2× blade 
length for finishing bay
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Selecting a mobility design is critical 
for economic success

• Factory mobility is the main driver for 
capital costs and risk

Photo by Hunter Huth, NREL
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Selecting a mobility design is critical 
for economic success

• Factory mobility is the main driver for 
capital costs and risk

• Different factories have different 
constraints
– Not a one-size-fits-all scenario

Photo by Hunter Huth, NREL
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Selecting a mobility design is critical 
for economic success

• Factory mobility is the main driver for 
capital costs and risk

• Different factories have different 
constraints
– Not a one-size-fits-all scenario

• Determines how adaptable this 
system is to new blade designs

Photo by Hunter Huth, NREL



NREL    |    78

Selecting a mobility design is critical 
for economic success

• Factory mobility is the main driver for capital 
costs and risk

• Different factories have different constraints
– Not a one-size-fits-all scenario

• Determines how adaptable this system is to 
new blade designs

• For this research to maximize industry impact, 
the rest of the system must be agnostic to 
mobility concept and blade design. Photo by Hunter Huth, NREL
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Real-time control must accompany all factory 
mobility concepts

• The six degrees-of-freedom of the 
robot arm react to the changing 
position of the blade

• The external motion of the blade, 
track, or autonomous vehicle move 
the robot arm along the blade.

Photo by Casey Nichols, NREL
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Concluding Remarks

• Automated wind blade finishing can have a large impact on 
blade manufacturing in the short- and mid-term
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• Custom tools for robotic manufacturing allow for improved 
processing speeds

• Captured data from the blade surface can be used to produce 
toolpaths for automated wind blade finishing
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Concluding Remarks

• Automated wind blade finishing can have a large impact on 
blade manufacturing in the short- and mid-term

• Custom tools for robotic manufacturing allow for improved 
processing speeds

• Captured data from the blade surface can be used to produce 
toolpaths for automated wind blade finishing

• Real-time control can optimize speed and accuracy to make 
automated wind blade finishing economically viable.
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